
LMI-based criteria for synchronization of complex dynamical networks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys. A: Math. Theor. 41 285102

(http://iopscience.iop.org/1751-8121/41/28/285102)

Download details:

IP Address: 171.66.16.149

The article was downloaded on 03/06/2010 at 06:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/41/28
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 285102 (13pp) doi:10.1088/1751-8113/41/28/285102

LMI-based criteria for synchronization of complex
dynamical networks

Lei Wang, Xiang-jie Kong, Huan Shi, Hua-ping Dai and You-xian Sun

State Key Laboratory of Industrial Control Technology, Institute of Industrial Control,
Zhejiang University, Hangzhou 310027, Zhejiang, People’s Republic of China

E-mail: leiwang@iipc.zju.edu.cn and hpdai@iipc.zju.edu.cn

Received 27 February 2008, in final form 20 May 2008
Published 19 June 2008
Online at stacks.iop.org/JPhysA/41/285102

Abstract
This paper considers the problem of controlling a complex dynamical network
by means of pinning. We point out that the synchronization criterion given in
the form of matrix eigenvalues can be equivalent to a linear matrix inequality
criterion. We further investigate network synchronization via pinning and
prove several linear matrix inequality theorems. In particular, we theoretically
provide two typical pinning strategies based on whether the graph which is
made up of unpinned nodes and edges between them is irreducible or not.
Numerical simulations including k-regular networks, star-shaped networks and
BA scale-free networks, are shown for illustration and verification.

PACS numbers: 89.75.Hc, 05.45.Xt, 02.10.Yn

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The control over dynamics which take place in complex systems consisting of large ensembles
of interacting units is one of the most important issues in various fields of applied science
and engineering. Of this endeavor, a simplified method is to represent each unit by a node
and the interaction between two units by an edge. Thereby the coupled complex systems
are characterized by a network, and the study is correspondingly converted to investigating
the control over the resultant network. Taking the distributed nature of complex networks into
account, much valuable work has focused on controller design for each node of the controlled
network [1–6]. However, controlling each node so that each follows a desired synchronous
evolution is not always possible in practice, which can be partly attributed to the enormous
quantity of nodes therein.

Many examples in reality may provide insights into the regulatory mechanisms to control
networks of coupled dynamical systems. For instance, the formation of mass opinions is
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frequently observed in social networks; the evolution of these opinions is often driven by key
individuals [7, 8]. Another example can be found in communication systems. In wireless
sensor networks, cluster-head nodes are enabled to manage and coordinate the information
gathered by local nodes; the deployed nodes are then organized effectively into a hierarchical
network, which is of great advantage to control, computation and communication [9]. Note
that controlling part of nodes such as the key individuals in social networks can also achieve the
expected result. Pinning control is therefore proposed by reducing the number of controllers
for synchronizing the complex networks.

The method of pinning control—apply localized feedback to a small fraction of network
nodes to achieve control goal—has attracted increasing attention of researchers [10–23].
Grigoriev et al studied the pinning control of spatiotemporal chaos [10]. Parekh et al
investigated the global and local control of spatiotemporal chaos in coupled map lattices
[11]. Wang and Chen [13] pinned a scale-free network and investigated its synchronization
stability based on a uniform complex dynamical network model. Li et al [14] proposed two
typical pinning strategies: random pinning and selective pinning. Sorrentino et al [15, 16]
explored the pinning controllability of complex networks in terms of the spectral properties
of an extended network topology. Xiang and Chen [17] introduced Lyapunov V-stability
for complex dynamical networks, and investigated pinning control based on the V-stability
formulation. All these efforts offer theoretical availability of pinning control. However,
we do not know how many nodes a complex network should be pinned to guarantee network
synchronization. Even if the number of pinned nodes is obtained, the selection of pinned nodes
from the entire network is still unknown. For example, consider a heterogeneous complex
network with N nodes. There usually exist

(
N

l

)
different possibilities by selecting different

nodes if l nodes are expected to be pinned; yet there is great difficulty in determining which
choice can ensure network synchronization since each of them may lead to a result of either
achieving or losing synchronization. A recent interesting result is, if the coupling strength
is large enough, the coupled dynamical network can achieve synchronization by designing
only one feedback controller [21]. In particular, Zhou et al provided an approximation for
estimating the detailed number of pinned nodes via adaptive control though the coupling
matrix (Laplacian) is redefined by modifying the diagonal entries [23]. In this paper, we
attempt to study the problem of pinning control by means of a linear matrix inequality (LMI)
approach. We develop LMI-form criteria of pinning synchronization. Different from the
existing results about pinning given in the form of an eigenvalue, the LMI approach provides a
simple and clear insight into the selections of pinned nodes. Considering the reducibility of the
unpinned nodes and edges between them composing the sub-network, we further investigate
node selection strategies and explore their applications.

The rest of this paper is organized as follows. A uniform complex dynamical network
model is introduced and some mathematical preliminaries are presented in section 2. In
section 3, we investigate the linear stability of the coupled dynamical network by matrix
transformation, and derive an equivalent LMI-form criterion. In section 4, the main results are
given based on the LMI approach. Section 5 presents two typical selecting strategies including
the analytical and numerical results of several typical network topologies. Conclusions are
finally summarized in section 6.

2. Problem formulation

The complex dynamical network consisting of N identical nodes with linearly diffusive
couplings under the effect of pinning control, can be formulated as follows:
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ẋi (t) = f (xi(t)) − σ

N∑
j=1

Lijxj (t) + ui(t), i = 1, 2, . . . , N, (1)

where xi = (xi1, xi2, . . . , xin)
T is an n-dimensional vector of dynamical variables of the ith

node, f (·) ∈ Rn describes the dynamics of each individual oscillator, σ is the overall coupling
strength, and L = (Lij ) ∈ RN×N is the Laplacian matrix, depicting the network topology.
The entry Lij = Lji = −1 if there is an edge between node i and node j , otherwise Lij = 0,
and the diagonal entries of matrix L are defined by

Lii = −
N∑

j=1,j �=i

Lij , i = 1, 2, . . . , N.

The network is usually assumed to be connected without any isolated clusters, i.e., the
Laplacian L is irreducible. The eigenvalues of L are real and non-negative, and can be
sorted as 0 = µ1 < µ2 � · · · � µN .

Here, the control input is generated by a simple linear feedback law:

ui(t) = −σkiBi(xi(t) − s(t)), i = 1, 2, . . . , N, (2)

where Bi is a binary vector: Bi = 1 if node i is controlled, otherwise Bi = 0; the feedback gain
ki > 0 in order to guarantee the negativeness. The control objective is to achieve complete
synchronization such that

x1(t) = x2(t) = · · · = xN(t) = s(t), (3)

where synchronous state s(t) ∈ Rn is a solution of an individual node satisfying ṡ(t) = f (s).
Defining error vectors as ei(t) = xi(t) − s(t),∀ 1 � i � N , we have the error system of

network (1)

ėi (t) = f (xi(t)) − f (s(t)) − σ

N∑
j=1

(Lij + Biki)ej (t), i = 1, 2, . . . , N. (4)

The network (1) is admissible in terms of synchronization if the error vectors ei(t) approach
zero. Suppose that l nodes in the complex network are pinned, where l = �δN� is the integer
part of the real number δN . We then need to determine the value of l and the selecting strategy.

If not otherwise specified, L > 0 (or �,<,�) means L to be a positive (or semi-
positive, negative, semi-negative) definite matrix. Throughout the paper, we have the following
assumption and lemmas.

Assumption 1. Suppose that ||Df (s)|| is bounded, where Df (s) is the Jacobian of f evaluated
at s(t). That is, there exists a non-negative constant α such that ||Df (s)|| � α.

Lemma 1 (Schur complements [24]). The three inequalities below are equivalent

(1) The LMI [
Q(x) S(x)

ST (x) R(x)

]
> 0;

(2) Q(x) > 0,M(x) = R(x) − ST (x)Q−1(x)S(x) > 0;
(3) R(x) > 0, N(x) = Q(x) − S(x)R−1(x)ST (x) > 0;
where Q(x) = QT (x), R(x) = RT (x), S(x) depend affinely on x.
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Lemma 2 (see Taussky [25]). An irreducible and weakly diagonally dominant matrix is
nonsingular.

Note that matrix A = (Aij ) ∈ Rn×n is irreducible if and only if there exists a positive
integer m � n−1 such that (I +A)m > 0, where I is an identity matrix with proper dimension;
if Aii �

∑n
j=1,j �=i Aij ,∀ i = 1, 2, . . . , n, and there at least exists a certain integer m � n such

that Amm >
∑n

j=1,j �=m Amj , then A is a weakly diagonally dominant matrix.

3. Linear stability analysis

This section investigates the local pinning synchronization of a controlled dynamical network.
Without loss of generality, we assume that the first l nodes 1 � l � N are selected and pinned
under the feedback controllers ui(t).

Linearizing the controlled network (4) on the synchronous solution s(t) leads to

η̇i(t) = Df (s)ηi(t) − σ

N∑
j=1

L̃ij ηj (t), i = 1, 2, . . . , N, (5)

where ηi is the vector of perturbations of the ith node, Df is the Jacobian matrix of f on s(t),
and the coupling matrix is L̃ = L + K with diagonal matrix K = diag(k1, . . . , kl, 0, . . . , 0).

Defining η(t) = (η1(t), η2(t), . . . , ηN(t)) ∈ Rn×N , we write equation (5) as

η̇(t) = Df (s)η(t) − ση(t)L̃T . (6)

Since L̃ is symmetric, there exists an invertible matrix � = (φ1, . . . , φN) satisfying

L̃� = ��,

where � = diag(λ1, λ2, . . . , λN), and λ1 � λ2 � · · · � λN are the eigenvalues of L̃. Note
that the Laplacian L is a symmetric, irreducible, and weakly diagonally dominant matrix with
non-negative diagonal, we can easily derive L̃ > 0 according to lemma 2.

Let η(t) = ξ(t)�−1. From equation (6), the matrix vector ξ(t) =
(ξ1(t), ξ2(t), . . . , ξN(t)) ∈ Rn×N satisfies the following equation:

ξ̇ (t) = Df (s)ξ(t) − σξ(t)�

furthermore,

ξ̇i (t) = (Df (s) − σλiI )ξi(t). (7)

Thus, we have changed the linear stability problem of the synchronous evolution s(t)

into the stability problem of N independent n-dimensional linear systems (7). We then focus
mainly on the discussion of the stability of linear systems (7).

We select Vi = 1
2ξT

i ξi as the Lyapunov function of system (7), then the derivative of Vi is
given by

V̇i = ξT
i

(
DT

f + Df

2
− σλiI

)
ξi, ∀ i = 1, 2, . . . , N.

Recalling assumption 1, the above equation can be further written as

V̇i � (α − σλi)ξ
T
i ξi � (α − σλ1)ξ

T
i ξi, ∀ i = 1, 2, . . . , N.

If λ1 > α/σ, Vi � 0. It is apparent that V̇ = 0 if and only if e(t) = 0. According to the
Lyapunov stability theorem, the dynamical system (7) is asymptotically stable. Thus, we have
the following theorem.

4
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Theorem 1. There must exist a positive constant λc such that if λ1 > λc, the controlled complex
dynamical network (1) is locally asymptotically stable about the synchronous solution s(t).

To obtain the value of λc is very important in our subsequent discussions. In above, a
theoretical value of λc has been provided as α/σ . It is worth noting that such a result is just a
sufficient condition of network synchronization. Besides, we can only estimate the boundary
σ of very few chaotic systems such as the Lorenz, Chen, Lü systems. Therefore, it is difficult to
obtain the value of α/σ in theory. A numerical value can be obtained by the largest Lyapunov
exponent of equation(7). Letting θ = σλi be the normalized coupling parameter, system (7)
can be written as

ẇ(t) = (Df (s) − θI)w(t). (8)

The largest Lyapunov exponent from equation (8) is the master stability function �(θ). If
�(θ) < 0, the synchronized state is stable. By calculating the value of �(θ), we can find an
unbounded interval (θc,∞) such that �(θ) < 0, where θc is a positive constant. We therefore
select λc = θc/σ as the critical value.

4. Main results based on LMI

Though the result in theorem 1 is quite clear, it cannot tell us how to select the pinned nodes.
This section will present pinning synchronization criteria based on LMI. First, an equivalent
condition of theorem 1 is given.

Theorem 2. The inequality λ1 > λc holds if and only if

L̃ − λcI = L + K − λcI > 0, (9)

where λ1 is the smallest eigenvalue of matrix L̃.

Proof. A simple proof is given here. For symmetric matrix L̃, there exists an orthogonal
matrix U such that UT L̃U = � = diag(λ1, λ2, . . . , λN). Then we have

L̃ − λcI = U(� − λcI )UT .

It is well known that L̃ − λcI > 0 iff � − λcI > 0, which is further equivalent to
λi − λc > 0,∀ i = 1, 2, . . . , N . Concerning the order of λi , we derive λ1 − λc > 0.
The proof is thus completed. �

Letting k1 = k2 = . . . = kl = k, the feedback gain matrix K is then written as

K = k

[
Il 0
0 0

]
, (10)

where Il is an l × l identity matrix. Also, the Laplacian matrix L is divided into the
corresponding block form of K:

L =
[
L1 L2

LT
2 L3

]
, (11)

where L1 ∈ Rl×l , L3 ∈ R(N−l)×(N−l) are symmetric matrices, L2 ∈ Rl×(N−l). We have the
following result.

Theorem 3. If the value of k is sufficiently large and λm
3 > λc, then the synchronous solutions

s(t) of the controlled network (1) are asymptotically stable under the pinning control laws,
where λm

3 is the smallest eigenvalue of L3.

5
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Proof. Let λm
3 and λM

3 be the smallest and largest eigenvalues of L3, respectively. Recalling
Rayleigh–Ritz theorem [26], we have

λcI < λm
3 I � L3 � λM

3 I. (12)

Since the Laplacian L is a semi-positive definite matrix, we derive PLP T � 0. Here, we
select P ∈ RN×N as

P =
[
I −L2L

−1
3

0 I

]
,

where L3 is a nonsingular square matrix. Then

PLP T =
[
L1 − L2L

−1
3 LT

2 0
0 L3

]
� 0. (13)

According to lemma 1, we deduce the following inequality from LMI (13)

L1 − L2L
−1
3 LT

2 � 0. (14)

Substituting LMI (12) into LMI (14) yields

L1 � 1

λM
3

L2L
T
2 . (15)

On the other hand, L̃ − λcI can be written in a block form as

L̃ − λcI =
[
L1 + (k − λc)I L2

LT
2 L3 − λcI

]
> 0. (16)

Recalling lemma 1 again, we derive an equivalent condition of LMI (16) as follows:

L3 − λcI > 0, L1 + (k − λc)I − L2(L3 − λcI )−1LT
2 > 0. (17)

The first inequality in equation (17) is obviously true. Here we discuss the second inequality
in equation (17).

Letting L∗
1 = −L1 + L2(L3 − λcIN−l )

−1LT
2 , we substitute LMI (12) and (15) into L∗

1,(
λm

3 − λc

)
L∗

1 � λM
3 L1. (18)

Therefore, the inequality
(
λm

3 − λc

)
(k − λc)I > λM

3 L1 can guarantee the positive
definiteness of matrix L̃ − λcIN . We thus select

k > λc +
λM

3 λM
1

λm
3 − λc

, (19)

where λM
1 is the largest eigenvalue of matrix L1. Following this, the controlled complex

network (1) achieves local asymptotical stability about synchronous solution s(t). The proof
is thus completed. �

It is worth noting that theorem 3 can estimate the approximation of feedback gain k. As
we know, the smallest eigenvalue λ1 will increase when enhancing the feedback gain k. But
there is an upper bound for the function λ1(k) with fixed l. Thus, it is sometimes unnecessary
to choose a sufficiently large value of k.

6
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5. Two pinning strategies

The complex dynamical network (1) achieves local synchronization if ν2 > νc (without the
input term, the detailed proof is omitted here since it is similar to theorem 1), where ν2 is the
second smallest eigenvalue of the Laplacian, and νc is a constant. As we know, ν2 � dmin for
any non-complete graphs, where dmin is the minimum node degree [27]. We then derive that

dmin > νc, (20)

when synchronization of a non-complete network is reached. Actually, if the synchronous
evolution is given by an extra virtual node added to the original network, the controlled network
(1) can be considered as a network of N + 1 dynamical nodes yi(t) [16], where yi(t) = xi(t)

for i = 1, 2, . . . , N and yN+1 = s(t). We then obtain a general Laplacian matrix L written as

L =
[
L̃ −B

0 0

]
,

where B = (k1B1, k2B2, . . . , kNBN)T . It is easy to verify that zero and λi are the eigenvalues
of matrix L. Thus, the controlled complex dynamical network (1) synchronizes with s(t) if the
second smallest eigenvalue of matrix L such that λ1 > λc, which agrees with synchronization
in complex networks. Similar to the condition in equation (20), we make the following
assumption:

Assumption 2. Assume that dmin > λc for the controlled network (1), where dmin is the
minimum node degree of the whole network.

In fact, the inequality in assumption 2 holds for most cases. Suppose that there exists
an unpinned node with minimum degree in network (1). If the inequality in assumption 2
does not hold, then there must exist at least a negative diagonal entry for matrix L3 − λcI .
It is obvious that all diagonal entries must be positive if the matrix is positive definite. In
this regard, L3 − λcI cannot be a positive definite matrix, and the controlled network cannot
be synchronized by such a pinning strategy. For example, most nodes have ‘low’ degree in
scale-free networks; we have to control each ‘low’ node to ensure the positive definiteness
of L3 − λcI . That is to say, most nodes should be controlled. However the aim of pinning
control is to apply localized feedback to a ‘small’ fraction of network nodes to guarantee
synchronization. Hence, we say assumption 2 is reasonable.

For the controlled network (1), we denote by C the set of pinned nodes, and C the set of
unpinned ones. Consider a special network G′ completely connected by the nodes in C and
edges between C and C, then

di � ni, (21)

where di is the degree of node i, ni is the number of neighbors of the ith node. The equality
occurs in equation (21) if and only if all neighbors of unpinned node i are uncontrolled nodes.
In the following, we consider two cases: (1) L3 is an irreducible matrix (i.e., all unpinned
nodes are connected without any isolated clusters), and (2) L3 is reducible (i.e., there exist
several or many isolated clusters owing to deleting all pinned nodes).

5.1. L3 is an irreducible matrix

For graph G′, there must exist a certain node j such that dj − nj > 0 (or else di = ni for
all i ∈ C. As a result, L = G′ or L contains at least two isolated clusters, which contradicts
assumption 1). Then L3 is an irreducible and weakly diagonally dominant matrix. According
to lemma 2, we derive L3 > 0. Note that the result cannot ensure network synchronization

7
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since the eigenvalue criterion does not hold. A sufficient condition can be given based on
Gerschgorin’s circle theorem as

di > ni + λc, ∀ i = l + 1, . . . , N. (22)

We then perform the selecting strategies of L3 as follows: take λc < 1 for example, first
select a node i, then for any one connected with node j, we can select one denoted as node j to
C and the others to the unpinned set C. Secondly, start with node j and put one node connected
with j into C while others into C. Repeating the operation to all newly added nodes, we can
find a partition of nodes. It is noted that di and ni are both positive integers in equation (22),
while λc can be any positive real number. Thus, we rewrite equation (22) as

di � ni + 	λc
, ∀ i = l + 1, . . . , N, (23)

where 	λc
 is the nearest integer of λc towards infinity. In order to obtain a large set C, the
inequality in (23) can be rewritten as an equality, i.e., di = ni + 	λc
,∀ i = l + 1, . . . , N .

Remark 1. The greedy method can be used to search nodes in set C since such a method can
ensure the irreducibility of L3. The searching result will lead to nodes in C with large degree.
In other words, a given network with more large nodes probably requires a smaller number of
pinned nodes by the strategy.

Corollary 1. In k-regular networks (k � 2), if every other 2k nodes are pinned and λc < 1,
the uniform complex dynamical network (4) is locally synchronizable.

Example 1. Consider a diffusively coupled dynamical network with the state equations

ẋi = Df xi − σ

N∑
j=1

Lijxj , i = 1, 2, . . . , N, (24)

where the network topology is a nearest-neighbor coupled ring lattice with size N = 9 (shown
in figure 1), the coupling strength σ = 12, and Jacobian matrix of Lorenz system with respect
to the equilibrium point is

Df =
⎡⎣−10 10 0

28 −1 0
0 0 − 8

3

⎤⎦ .

It is easy to derive the critical eigenvalue λc = 0.986. It follows from corollary 1 that we
need to control at least two nodes. Figure 2 shows the evolution of λ1(k) for different pinning
strategies. We see that pinning nodes 4, 8 (strategy d) can achieve network synchronization
when k � 36.4, while others, no matter what the value of k is, cannot reach synchronization.
The strategy proposed in corollary 1 is the best one for improving the smallest eigenvalue of
matrix L̃ in k-regular network. It is observed that limk→∞ λ1(k) will approach a constant for
a fixed l. That is to say, though we can enhance the synchronizability by increasing the value
of feedback gain, it is of little use as k is already large enough. As a result, we had better
selected more nodes to be pinned instead of enhancing feedback.

5.2. L3 is a reducible matrix

In reality, many complex networks exhibit high heterogeneity of node connectivity, which
typically possesses a power-law degree distribution. In these scale-free networks, hubs that
connect many nodes of the network are quite popular [28]. To guarantee the irreducibility

8
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1 2 

3

4

5

6

7

8

9

a

b d

c

Figure 1. A two-regular network with size 9. Concerning the isomorphic feature of figure 1,
there are four cases when two nodes are pinned: a: selecting nodes 1, 2; b: selecting nodes 7, 9;
c: selecting nodes 3, 6; d: selecting nodes 4, 8.

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1

1.2

k

λ 1

Figure 2. Evolution of λ1(k) under the four pinning selections as shown in figure 1. The legend
is as follows: case a (stars), case b (circles), case c (triangles), case d (dots), and the critical
eigenvalue of synchronization (line). If λ1(k) > λc , then the controlled network is said to achieve
local synchronization. It is easy to see that pinning the given two nodes will ensure network
synchronization.

of matrix L3 may not be suitable for a general complex network. One simple operation is to
divide L3 into several even lots of isolated clusters, i.e., L3 is reducible.

9
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A generic expression of L3 is

L3 =

⎡⎢⎢⎢⎣
� 0 0 0
0 J1 0 0

0 0
. . . 0

0 0 0 Jo

⎤⎥⎥⎥⎦ , (25)

where � is a diagonal matrix whose nonzero entries are equal to the degrees of the
corresponding nodes, Ji, i = 1, 2, . . . , o, are the ith isolated clusters respectively. Then
we can write down the synchronization condition as

� > λcI (26)

and

Ji > λcI, i = 1, 2, . . . , o. (27)

It follows from assumption 2 that equation (26) holds true for any isolated nodes. And
each block Ji in equation (27) is an irreducible and weakly diagonally dominant matrix. Thus
we can handle equation (27) the same as section 5.1. When there is only one isolated cluster
in C, the case discussed above will reduce to that in section 5.1.

To obtain lots of isolated clusters, a natural idea is to select l = N − l nodes without
any link between each other. Then L3 becomes a diagonal matrix. Obviously, the larger the
number l, the smaller the fraction δ of pined nodes. Generally speaking, loading nodes with
low degree into set C will probably lead to a large dimension of matrix L3. Such a selection is
particularly effective for those networks whose topologies exhibit star-shaped architectures.

Corollary 2. Consider a simple m-star network. If λc < 1, only pinning the kernel node will
guarantee network synchronization.

The result is clear since L3, formed by all non-kernel nodes, is an identity matrix.

Example 2. The controlled network is described in the same way as equation (24) and the
critical eigenvalue of synchronization is λc = 0.986. The Laplacian matrix of the star network
is

L =

⎡⎢⎢⎢⎢⎢⎣
N − 1 −1 −1 · · · −1
−1 1 0 · · · 0
−1 0 1 0 0
...

...
. . .

. . .
...

−1 0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎦ .

Figure 3 shows the numerical comparison between pinning the kernel node and pinning
an arbitrary non-kernel node, where network size is N = 9. From figure 3, we can see that the
controlled network (24) with star topology will definitely synchronize to the equilibrium point
by pinning the kernel node, while even the feedback gain approaches to infinity, the controlled
network cannot achieve synchronization by pinning any non-kernel nodes.

Remark 2. It is not easy to obtain a diagonal matrix L3 with the largest dimension in a general
topological network. One key reason is that such a problem is the maximum independent
set problem in graph, which is proved to be a commonly known NP-complete problem. In
addition, it may not be the optimal solution of the number of controlled nodes.

Here we give a general theorem on how to find the set C and C.
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Figure 3. Pinning a star topological network. The figure shows that, if λc = 0.986, no matter
what the k value is, the controlled network by pinning any one non-kernel node will not achieve
synchronization, while the feedback gain satisfies k > 608, pinning the kernel node will ensure
synchronization of the complex dynamical network.

0 1 2 3 4 5 6 7 8
0

5

10

15

20

t

ε(
t)

Figure 4. Pinning a BA scale-free network, where network size N = 500, coupling strength
σ = 3, feedback gain k = 20, and synchronization index ε(t) = ∑N

i=1 ||ei (t)||, which is used to
characterize network synchronization. For the network, we pinned 30 nodes to ensure the two sets
in theorem 4.

Theorem 4. Suppose that nodes in the controlled network (4) can be divided into two parts:
C and C. If each node in set C can be found z edges connected with nodes in set C and λc < z,
then the dynamical network will synchronize with the evolution s(t).

The proof is omitted here since it can be easily deduced by the above discussions.

11
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Example 3. In BA network models (at each time step, we add a new node with two edges that
link the new node to two different nodes already present in the system) [29], any node with
degree 2 cannot connect with each other. Recalling the exact degree distribution of the BA
network P(d) = 12

d(d+1)(d+2)
[30], we then have P(2) = 0.5. That is to say, almost half of the

nodes inside the BA model need not to be pinned (Actually, if λ3 < 1, similar result that nodes
with degree 3 need not to be controlled can be obtained based on LMI.). On the other hand,
there exist a few hubs (nodes with large degree) linking most nodes of the BA model. Then
pinning these hubs will probably meet the condition of theorem 4 easily. Figure 4 supplies the
numerical simulation of controlling a BA network model, where the network size N = 500,
and the synchronous solution s(t) is a chaotic Lorenz oscillator. To satisfy the condition in
theorem 4, we need to select δ = 0.06 at least, which is averaged over ten realizations.

Remark 3. In many evolving complex network models, such as the BA model, pseudofractual
networks [31–36], and Apollonian networks [40–45] etc, nodes with the minimal degree of
the corresponding networks cannot connect each other according to the growing laws. On this
occasion, the diagonal matrix � defined in equation (25) consists of all these nodes. In other
words, all these low nodes need not to be pinned any more.

6. Conclusion

In this paper, we have investigated the problem of pinning control based on LMI. Several
criteria in LMI form are given to guarantee network synchronization. These results provide
several pinning strategies to various typical network topologies including k-regular networks,
star-shaped networks, and scale-free networks. We also perform corresponding numerical
simulations for verification. Especially, the LMI-based criterion offers an explanation that
the scale-free network will achieve synchronization more easily by selective pinning than by
random pinning. It is also noted that these criteria can be easily applied to practice since the
analytical results are derived with respect to node degree. Actually, many other factors such as
weights, betweenness, degree correlation etc affect the controllability of complex dynamical
networks. This paper just concerns node degree based on LMI, which is an attempt to study
the control problem of complex networks.
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